

Target therapy matched to genomic alterations in patients with recurrent IDH wildtype glioblastoma A real-life cohort analysis from Veneto Institute of Oncology, Padua (Italy)

Giulia Cerretti *, Marta Padovan, Chiara De Toni, Marta Maccari, Alberto Bosio, Mario Caccese, Martina Corrà, Ilaria Cestonaro, Salvatore Vizzaccaro, Alice Pittaro, Angela Guerriero, Marina Coppola, Giuseppe Lombardi

* Department of Clinical and Experimental Oncology, Medical Oncology 1, Veneto Institute of Oncology IOV – IRCCS Padua, Italy

DECLARATION OF INTERESTS

Nothing to declare

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Background

- New molecular technologies allow the identification of alterations within hundreds of cancer-related genes and can guide a **personalized strategy** in cancer treatment.
- There are only few data available regarding target therapy efficacy and feasibility for patients with glioblastoma.

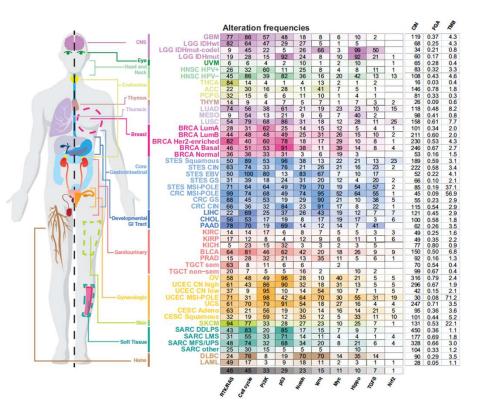


Image from Sanchez-Vega F, Mina M, Armenia J, et al. Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell. 2018;173(2):321-337.e10

Methods

Nature of the study	Inclusion criteria	Targetable alteration	Treatment
Our retrospective study involved all patients with IDH wildtype GBM treated with target therapy between March 2020 and March 2023. A basal next-generation sequencing profiling was obtained from formalin-fixed paraffin-embedded tumor samples, using FoundationOne® CDx or Caris MI-Transcriptome® .	 Newly diagnosed or recurrent GBM (according to WHO 2021); Treatment with target therapy at relapse / progression. 	Molecular alterations were classified into categories of targetability according with ESCAT (ESMO Scale for Clinical Actionability of Molecular Targets).	 Target therapy was given as: → agnostic approval, or → in compassionate use programs, or → in clinical trials.

NGS=next-generation sequencing; GBM=glioblastoma

Methods

Target	ESCAT	Therapy
BRAF V600E	IB	dabrafenib/trametinib
NRTK 1-2-3 fusion	IC	larotrectinib
FGFR 1-2-3 alteration	IIB	erdafitinib
ROS1 fusion	IIIA	entrectinib
MET fusion - amplification	IIIA	capmatinib; APL-101
PIK3CA mutation	IIIA	alpelisib
PTEN loss - mutation	IIIA	ipatasertib +/- atezolizumab

MET NTRK **G** FGFR C ROS1 → APL-101 -+ larotrectinib → erdafitinib -> entrectinib - capmatinib NTRK FGFR ROS1 MET NGF FGF GF HGF SHP2 SHP1 SOS Grb2 FRS2 SOS Grb2 FRS2 SHC IRS1 Grb2 GAB1 GAB1 C PIK3CA RAS PI3K → alpelisib Raf C BRAF PTEN AKT → dabrafenib (anti-BRAF) + trametinib (anti-MEK) PTEN MEK → ipatasertib +/mTOR atezolizumab ERK **†** Traslational capacity ↑ Cell survival ↑ Cell cycle progression ↑ Cell proliferation

ESCAT Scale is from: Mateo J, et al. A framework to rank genomic alterations as targets for cancer precision medicine: the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). *Ann Oncol.* 2018;29(9):1895-1902

Created in BioRender.com bio

Gain-of-function alteration
 Loss-of-function alteration

Methods

Endpoints	Overall response evaluation	Intra-patient response evaluation
Efficacy of target therapies: → ORR → DCR → PFS → OS	→ Responses were assessed by brain MRI every 6–8 weeks according to RANO (Response Assessment in Neuro-Oncology) criteria.	PFS2/PFS1 ratio was calculated, as: PFS of targeted therapy (PFS2) PFS of the previous treatment (PFS1)
Toxicity of target therapies (secondary endpoint)	→ PFS was defined as the time from the start of targeted therapy to the date of progression.	

ORR=objective response rate; DCR=disease control rate; PFS=progression-free survival; OS=overall survival

□ Out of the **37** patients who received TT, 21 were male; ECOG performance status was \leq **1 in 31** patients.

 $\Box \quad \text{Median line of treatment was } \mathbf{3} (2-7).$

	Patients treated with	To you do al Ale a you a	Best Response (RANO criteria)				000	
Gene alteration	targeted therapy	Targeted therapy	CR	PR	SD	PD	ORR	DCR
BRAF V600E	9	dabrafenib/trametinib	1	1	5	2	22%	77%
NTRK 1-2-3 fusion	2	larotrectinib			1	1	0%	50%
FGFR1-3 alteration	4	erdafitinib			2	2	0%	50%
ROS1 fusion	1	entrectinib	1				100%	100%
MET fusion –	1	capmatinib			1		33%	67%
amplification	2	APL-101		1		1	33%	07 %
PIK3CA mutation	6	alpelisib				6	0%	0%
	6	ipatasertib			1	5	0%	8.3%
PTEN loss – mutation	6	ipatasertib +/- atezolizumab				6	070	0.370
			o	37 patie (37.8%) btained ease co	а			

TT=targeted therapy; ECOG=Eastern Cooperative Oncology Group; CR=complete response; PR=partial response; SD=stable disease; PD=progression disease; ORR=objective response rate; DCR=disease control rate

□ Out of the **37** patients who received TT, 21 were male; ECOG performance status was ≤ **1 in 31** patients.

 \Box Median line of treatment was **3** (2 – 7).

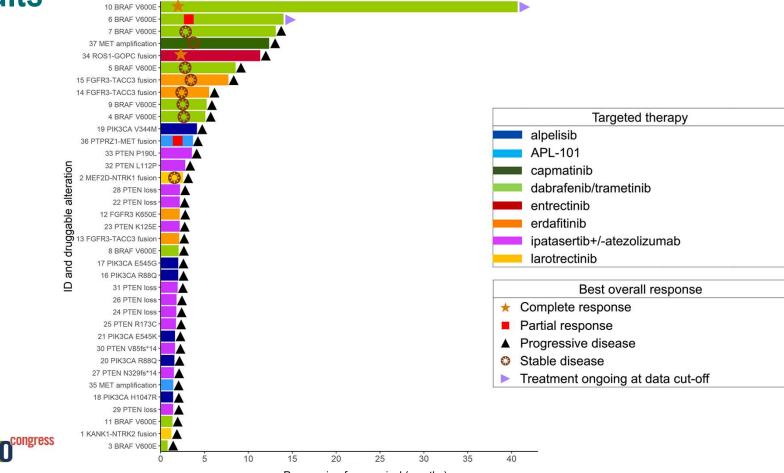
Gene alteration	Patients treated with	Targeted therapy	Best Response (RANO criteria)					DCR
	targeted therapy		CR	PR	SD	PD	ORR	DCR
BRAF V600E	9	dabrafenib/trametinib	1	1	5	2	22%	77%
NTRK 1-2-3 fusion	2	larotrectinib			1	1	0%	50%
FGFR1-3 alteration	4	erdafitinib			2	2	0%	50%
ROS1 fusion	1	entrectinib	1				100%	100%
MET fusion –	1	capmatinib			1		33%	67%
amplification	2	APL-101		1		1	33%	07 %
PIK3CA mutation	6	alpelisib				6	0%	0%
PTEN loss – mutation	6	6 ipatasertib		1	1	5	0%	0.20/
PTEN 1055 – mutation	6	ipatasertib +/- atezolizumab				6	070	8.3%

At the cut-off date (Aug 2023), **26 patients had died**, and **35** patients had a **progressive disease**.

□ In the entire cohort, the median **overall survival** after starting TT was **8.06** months (95% CI: 6.48-15.92) and **progression-free survival** after starting TT was **2.17** months (95% CI: 1.94-3.68).

TT=targeted therapy; ECOG=Eastern Cooperative Oncology Group; CR=complete response; PR=partial response; SD=stable disease; PD=progression disease; ORR=objective response rate; DCR=disease control rate

Out of the 37 patients who received TT, 21 were male; ECOG performance status was ≤ 1 in 31 patients.

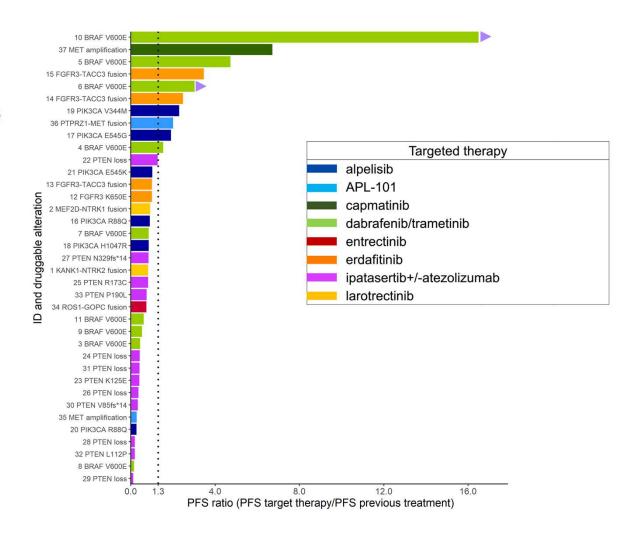

 \Box Median line of treatment was **3** (2 – 7).

Conc alteration	Patients treated with	Targeted therapy	Best R	esponse		DCR		
Gene alteration	targeted therapy		CR	PR	SD	PD	ORR	DCK
BRAF V600E	9	dabrafenib/trametinib	1	1	5	2	22%	77%

- □ The dabrafenib/trametinib subgroup had the **longest median PFS** (5.23 months) and **OS** (8.88 months), a disease control rate of 77%, an objective response rate of 22%, and a median duration of response of 27.35 months.
- Seven out of nine patients had died, and two patients are continuing dabrafenib/trametinib.
- □ No toxicities were reported with patients treated with dabrafenib/trametinib.
- Among all patients, no grade 4 adverse events were observed and in no case target therapy was interrupted for toxicity.

CR=complete response; PR=partial response; SD=stable disease; PD=progression disease; ORR=objective response rate; DCR=disease control rate; PFS=progression-free survival; OS=overall survival

MADRID P



Progression-free survival (months)

PFS of targeted therapy (PFS2) PFS of the previous treatment (PFS1)

- PFS-ratio > 1.3 might suggest a clinical benefit, according to previous literature.
- PFS-ratio > 1.3 was achieved in 27% of overall cohort and in 44% of patients treated with dabrafenib/trametinib.

Conclusions

Target therapy	Present perspectives	Future trends
In selected cases of patients with recurrent glioblastoma, target therapy is a viable option that can have activity and improve overall survival . In our cohort, target therapy was well tolerated.	Our findings endorsed the efficacy of anti-BRAF / anti-MEK treatment for BRAF V600E mutant glioblastomas.	We reported interesting results targeting MET, ROS1, NTRK and FGFR, but a better definition of the level of evidence will derive from basket trials , prospective studies , and registries .

IOV Oncology 1 Neuro-Oncology Group

- Giuseppe Lombardi Marta Padovan Mario Caccese Vittorina Zagonel Giulia Cerretti Marta Maccari Alberto Bosio Eleonora Bergo
- **Neurosurgery 1 and 2**
- Domenico d'Avella Luca Denaro Chioffi Franco Francesco Volpin
- ISTITUTO ONCOLOGICO VENETO

Cancer Centre

Padua

Neurology Az. Univ Maurizio Corbetta Alessandro Salvalaggio Marco Zoccarato **Neuro-Imaging** Renzo Manara Giovanni Librizzi **Diego Cecchin Traslational Researches** Stefano Indraccolo Susanna Mandruzzato Anita De Rossi

Care

UNIVERSITÀ **DEGLI STUDI** DI PADOVA

